机器视觉,就是用机器代替人眼,来做测量和判断。本质上,机器视觉是图像分析技术在工厂自动化中的应用,通过使用光学系统、工业数字相机和图像处理工具,来模拟人的视觉能力,1、从生产效率的角度来说,由于操作工在长时间工作下容易疲惫,人工视觉质量效率低下且精度不高,而机器视觉可以大大提高生产效率和自动化程度。
并做出相应的决策,最终通过指挥某种特定的装置执行这些决策。
在自动化生产过程中,机器视觉已经开始慢慢取代人工视觉,尤其是在工况检测、成品检验、质量控制等领域,应用广泛,随着工业4.0时代的到来,这一趋势不可逆转。
为什么要用机器视觉替代人工视觉
原因有很多,以下列出较主要的几点:
2、从成本控制的角度来说,培训一个合格的操作工需要企业管理者花费大量的人力物力,然而单纯的培训还远远不够,后续还需要花费大量的时间,使操作工的水平在实践中得到提升。而机器视觉系统只要设计、调试和操作得当,可以在很长一段时间内不间断使用,同时确保生产效果。
3、在某些特殊工业环境中实施工况检测,如焊接、火药制造等,人工视觉可能会对操作工的人身安全造成威胁,而机器视觉从某种程度上有效地规避了这些风险。
机器视觉系统的构成模块
一个完整的机器视觉系统一般由光学系统(光源、镜头、工业相机)、图像采集单元、图像处理单元、执行机构及人机界面等模块组成,所有功能模块相辅相成,缺一不可。
照明(光源):照明是影响机器视觉系统输入的重要因素,光源系统的设计至关重要,直接关系到输入数据,即图像的质量和应用效果。
镜头:镜头是机器视觉系统中的重要组件,其作用是光学成像。
工业相机:在机器视觉系统中工业相机必不可少,它就像人眼一样,用来捕获图像。
图像采集单元:图像采集单元中最重要的元件是图像采集卡,它是图像采集单元与图像处理单元的接口,用来将采集到的图像进行数字化,并输入、存储到计算机中。
执行机构与人机界面:在完成图像采集和处理工作之后,需要将图像处理的结果输出,并做出与结果相匹配的动作,如剔废、报警等,并通过人机界面显示生产信息。
机器视觉系统的原理:通过光学系统,将需要拍摄的目标转换成为图像信号,再将图像信号传送至图像采集卡,并根据像素分布、亮度、颜色等信息,转换成为数字信号。
图像处理单元对这些数字信号进行有效地运算并获得拍摄目标的特征值,从而根据判别的结果来指挥设备进行相对应的动作。
随着人工智能技术的广泛应用,机器视觉系统一定会更多和行业应用结合,给很多细分产业提供更适合行业应用的视觉解决方案.